Individual Project: Object Detection with
Tensorflow

Ryan Swope
April 20, 2021

1 Introduction

1.1 A Foreword about Tensorflow

Tensorflow is an open source library used primarily for machine learning ap-
plications. It is an incredibly powerful tool capable of leveraging GPUs and
ASIC, and gives its users access to optimized neural network geometries. As its
name implies, Tensorflow utilizes tensors rather than the two dimensional arrays
typically associated with neural networks. Unfortunately, as is true with many
things, the versatility and power of Tensorflow bring with it a steep learning
curve and a general lack of unified tutorials. Following one article about writ-
ing an object detector may read very different from another tutorial depending
on the implemented version of Tensorflow, the model trained on top of, or the
operating system being run on. This lead to several extensive road blocks in
my work that I'll detail later. However, despite these shortcomings, Tensorflow
provides anyone with experience in computer programming and ~50 hours to
spare with perhaps the most accessible and powerful machine learning library
available to the public at no cost.

1.2 Goals of this Project

Typically our modeling assignments have focused on one topic or application
and then built off that concept or built on it, so I feel its appropriate to lay out
what my goals were for this project. During the Neural Networks assignment,
I attempted to train an object detection network to detect images of knives.
I thought this would be an interesting application of object detection as it
could theoretically be used by law enforcement and it wasn’t a readily available
pretrained model (many networks exists that can detect pets, cars, etc.). I was
met with very limited success, and the network didn’t really detect the knives.
Although there were other applications of Tensorflow I could’ve explored, I felt
unfulfilled by the results of that network, so I wanted to revisit it. My goals for
this project were:

1. Create a training set of images of knives



2. Train a network that can successfully detect knives in pictures (and pos-
sibly video).

3. Try training again on a GPU to compare training speed and accuracy

4. Time permitting, try and find a larger dataset online and compare a model
trained on that to mine.

5. Time permitting, try again in a Colab notebook with TPU acceleration.
6. Demonstrate the detection!

I was able to complete all these except for the TPU training. I'll detail my
successes and failures for the others throughout the reports, but I’ll address the
TPU one now. Essentially, there were several hoops to jump through just to set
up the model to be trained by a TPU, and ultimately the possible increase in
training speed I would get using the TPU over a GPU as not worth the trouble.
Among other things, the training I was doing wasn’t constructed to leverage
TPUs. TPUs are a type of ASIC which stands for Application-Specific Inte-
grated Circuit. Essentially, these are cards which are developed to do VERY
specific mathematical computations with extreme efficiency, and nothing else.
Nowadays, Bitcoin miners use ASIC cards that are designed specifically to do
work on Bitcoin’s hashing algorithm. Similarly, TPUs are a form of ASIC de-
signed to do tensor math, but they need to be “spoon fed” the appropriate
tensors. As a results, I couldn’t leverage them to their full potential and ulti-
mately a GPU was sufficiently fast for my purposes.

1.3 The RCNN COCO Model

Up to this point I have simply referred to the object detector as a “model”.
This is true, but there are many object detection algorithms including YOLO
(You Only Look Once), GAN (General Adversarial Network), and RCNN (Re-
gional Convolution Neural Network). My network was trained using an RCNN
network initially trained on the COCO data set from Microsoft. Convolution
neural networks work by apply filters to images to extract features, such as ver-
tical lines, color intensities, or contrast. That simple data is then fed through
the network (in which at least layer uses convolution rather than matrix mul-
tiplication, hence the name) in an effort to recognize more complex patters.
CNNs have the disadvantage of being fully connected (each neuron in one layer
is connected to every neuron in the next) and thus are prone to over fitting data.
This was apparent in my testing, but I'll get to that later. A regional convo-
lution neural network simply splits an image into regions (usually this is done
several times with different sized regions) and looks for patterns in the regions,
before the entire image is put together. I specifically used the faster-rcnn model,
which is essentially just an rcnn model with some optimized hyperparameters
and network topology.



Feature maps

=
*. Output
e

Convolutions Subsampling Convolutions Subsampling Fully connected

Figure 1: An example of an RCNN network

The COCO data set, or Common Objects in COntext EI, was not created by
a gorilla that knows sign language. It is a data set which contains hundreds of
thousands of images that have been hand labelled. The images are split into
three subclasses: iconic, iconic scenery, and non-iconic. Iconic in this context
refers to if there is an obvious and distinguishable subject of the image, or if
the image captures a more random and chaotic scene. As the name suggests,
the data set labeled images of everyday objects such as animals, vehicles, furni-
ture, and many others. Due to the huge number of images, almost all possible
arrangements are encountered: multiple objects, overlapping objects, different
lighting conditions, and more. Training a network on this data set will create a
model that, in general, is able to differentiate and recognize objects of interest.

2 (Re)Training A Model to Recognize Knives

2.1 Retrain

The question you may ask yourself is, “The COCO model is trained to find
lions and tigers and bears, planes, trains, and automobiles, but certainly not
knives. So how does it help? Wouldn’t you have to start from scratch?” The
fact of the matter is, COCO can’t detect knives yet. But, rather than starting
from scratch, we can simply retrain retrain it on a data set of knives to make
it... edgier. And although we are retraining it on a new data set, the idea is
the network weights that allowed the network to recognize the aforementioned
objects are pretty close to what they’ll be after training on knives, so rather
than climbing the whole mountain, we kind of get to take a gondola to the top.
In a lot of ways this is how children begin to learn objects. It takes a very long
time for them to learn what a few objects are, but once the learn how to learn,
the process is much faster.

2.2 Data Preparation

To retrain our model, we need to supply it with labeled data. I did this by
taking ~275 pictures of several different knives around my house in a variety

L“Microsoft COCO: Common Objects in Context”, Lin et al (2015)



of lighting conditions, angles, background, etc. I also included images of me
holding the knives at various angles.

Figure 2: The knives I took pictures of.

I combined these with ~100 pictures from the internet of people holding
or fighting with knives. I then went through and manually labeled the knife
(knives) in each image with LabelImg. LabelImg allows you to draw boxes
around the knife (knives) in an image and quickly annotate them. It then also
automatically exports a .xml that saves the coordinates of the vertices of the
bounding box(es). During this point in my work I made the first of many grave
errors: I named the class ‘knive’, which of course is not how you spell knife. I
never caught the mistake because after the first image it auto-filled the class in
for me. I could *in theory* go back and fairly easily change them in bulk, but I
chose not to for two reasons. The first is the model works with the misspelling,
and I seriously question whether its worth retraining it just to correctly spell
the class. Second of all, it proves that this model that I claim to be mine is
mine. Google or other developers online wouldn’t keep an error like that in their
models. Thus I have proof by error that this model is mine. There were more
errors with the name which I will grace the reader with later in the report. After
this, our data was essentially ready to be used. The only additional preparation
was to compile the training data into a few files that would point to the necessary
data.



Figure 4: A training image internet.



Figure 5: A training image that I took.

Figure 6: A training image that I took.

2.3 Configuration

At this point, the model was essentially ready to train. All that was left was to
prepare a configuration file for the network that would tell it how many classes
(types of object) it would be looking for — in this case one, where the training
data was, and the hyperparamters with which it would train.



3 Training

3.1 Hardware

The time to train a neural network, especially complex ones such as this, can be
astronomical for CPUs. My desktop computer, which has an 8 core processor,
could train on the order of 5,000 steps of the fast rcnn model in the span of a
day. While it has a GPU, the GPU is manufactured by AMD. AMD does not
have a proprietary framework to communicate with Tensorflow, and thus I had
to rely on open source software called ROCM. While it looked promising, and
there are plenty of people who got it to work, I was unable to get ROCM to work
despite hours of dealing with graphics card drivers and kernels. In contrast, my
parent’s laptop (with its Nvidia GTX 1060 GPU) can run Tensorflow with GPU
acceleration thanks to Nvidias CUDA and cuDNN libraries. It was able to hit
the soft-coded limit of 200,000 steps within ~12 hours of training (this limit
was set by the people who released the COCO model, as they found there was
no appreciable return after this many steps).

3.2 Loss Convergence

When the model is done training, or has effectively reached its accuracy limit,
the loss value will have converged to a value. For the fast rcnn model, this
convergence value is ~.05, although after 200,000 steps was closer to .03 in
my experience. However, for two and a half weeks — this goes back to the last
assignment — I was plauged by exploding loss values. The loss would decrease as
expected for ~500 steps, before exploding to values exceeding 10E21. Obviously,
something was wrong, but it took me upwards of two weeks to figure out what
it was. The problem was painfully simple. I had labeled my images with the
class name ‘knive’, but in providing the list of possible objects to the model, I
called it ‘Knive’ with a capital K. I cannot stress enough how long it took me
to find this bug, but after weeks of searching for it, I was able to fix it and train
the network as expected.

4 The Three Models

4.1 Architecture

For the purposes of examination, I decided to look at the results given by three
models: the one trained on my desktop with my training set (5523 steps), the
one on the GPU with my training set (200,000 steps) and one on the GPU
(80,000 steps) with a training set I found online (about 800 training images as
compared to about 350 from mine). Despite the difference in steps, the accuracy
of the two GPU models (as measured by loss) are equivalent as the loss value
had converged in both cases to the value of about .05. All three models used
the faster renn architecture pretrained on the COCO data set, starting from the
same standard checkpoint.



Value

Value

le23

Loss Explosion Due to K

1754

1.50 4

1.25 4

1.00 4

0.75

0.50 4

0.25 4

0.00

0

T T T T T T T
25000 50000 75000 100000 125000 150000 175000
Step

Figure 7: Loss Explosion due to errors.

Model Architecture Comparison

1.75

1.50 1

1.25 4

1.00

0.75 4

0.50 4

0.25 4

0.00

—— CPU on my set
—— GPU on my set
—— Model from other Set

25000 50000 75000 100000 125000 150000 175000 200000
Step

Figure 8: Loss correctly converging.



1e23 Loss Explosion Due to K

2.00

1754

1.50 4

1.25

1.00

Value

0.75 4

0.50 4

0.25 4

0.00 LAL
T

0 25000 50000 75000 100000 125000 150000 175000
Step

Figure 9: Loss correctly converging (zoomed in). Notice the CPU and how few
steps it managed to train.

Figure 10: From left to right: GPU, my training set; GPU, other training set;
CPU, my training set.

4.2 Image Performance

I selected four images from the test set to demonstrate how each of the three
models performed. Although not quantitative, its fun to see and the entire point
of the project was to arrive at this point. I will put all these files in the Google
drive folder which I will share along with this report.

Unsurprising was the fact that the more developed, GPU trained models do
better. What was surprising was the fact that the model trained on my training
set seemed to do better than the model trained on the downloaded data set.
Despite the larger number of images, I think that data set suffered a few short
comings. Among these was the fact that the images were not taken to be used
to train a network. I intentionally took images of knives that I knew would be
advantageous for the network, particularly me holding knives at various angles.



Figure 11: From left to right: GPU, my training set; GPU, other training set;
CPU, my training set.

Figure 12: From left to right: GPU, my training set; GPU, other training set;
CPU, my training set.

Figure 13: From left to right: GPU, my training set; GPU, other training set;
CPU, my training set.

10



Figure 14: Example of over fitting. Notice that the features do vaguely look
knife-shaped.

This may be why the models trained on my data set were able to recognize the
knife in Figure

4.3 Overfitting and Video

I also ran each of these models on a clip from the movie Crocodile Dundee. The
shortcomings of the RCNN become more apparent in these videos because the
network frequently detects knives where there are none. I believe the majority
of this error is due to the lack of distinguishable features on a knife. In general,
its hard to describe it beyond a long, thing piece of metal. Thus many long thin
lines could easily be misconstrued with a knife. However, I think these errors
are amplified by the overfitting that’s characteristic of CNN networks. This was
true across all the models. However, when there is actually a knife on screen, the
GPU model trained on my training set again does a better job of recognizing it!
Funny enough, all three models fail to detect the mugger’s switchblade but are
able to recognize Crocodile Dundee’s knife, proving him right after all. Again,
these videos (along with the original) will be in the Google drive.

11



Figure 15: Frame from video, model trained on internet training set.

Figure 16: Frame from video, model trained on my training set.

5 Conclusion

5.1 Goals

Overall, I think I met the goals of this project. I already explained why the
TPU goals ended up being unnecessary. Considering how bleak I felt about this
at times in the last couple weeks, I am extremely happy with the results. Going
forward, if T were to revisit this topic (which I would like to!) I would like to:

1. Figure out a way to speed up the video detection, which could be done
with less accurate (but faster) models, and by downsizing the video file
(the video I used in this was 1280x720).

12



2. Explore other types of models that could potentially do a better job of
detecting knives

3. try out other objects

4. More general to Tensorflow, explore Deep Convolutional Generative Ad-
versarial Networks, which generates images based on what an object de-
tection network such as this one “thinks” that object looks like.

5.2 Improvements

Among some small improvements, perhaps the most drastic would be to develop
a feature extraction regiment that is tailored to looking for knives. For example,
you could look at reflectivity, or look for hands (which visually are easier to find
than knives), and then look to see if there is a knife in the hand. However, I am
very happy with the results I managed to get with a limited training set and
computational power.

5.3 Reflection

Overall T am very happy that I chose this as my final project for modeling. It
really challenged my skills in python and Linux command line, and definitely
pushed me out of my comfort zone. It was definitely a trial by fire, but I gained
an incredible amount of knowledge from the experience, most of which can’t fit
in this report. Ultimately the skills I learned in the past couple weeks using
Tensorflow and object detection are completely unique from anything I've done
before, and I expect they will come in handy at some point in the future.

5.4 Acknowledgments

I would like to thank Rachel Price for her review of my report and moral support.
I’d also like to thank Evan, known as “EdjeElectronics” on Github, for his
excellent tutorial on Tensorflow Object Detection. Although not perfect, it
provided the framework I needed. Finally, I’d like to thank the teams that
worked on COCO, Tensorflow, and the Tensorflow Object Detection API.

13



	Introduction
	A Foreword about Tensorflow
	Goals of this Project
	The RCNN COCO Model

	(Re)Training A Model to Recognize Knives
	Retrain
	Data Preparation
	Configuration

	Training
	Hardware
	Loss Convergence

	The Three Models
	Architecture
	Image Performance
	Overfitting and Video

	Conclusion
	Goals
	Improvements
	Reflection
	Acknowledgments


