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1 Introduction

The two-body problem describes the solution to the equations of motion of one
body orbiting another in a gravitational field. The motion can be described
with the equation:

r̈ = −GM
r2

~r

r
(1)

Attempting to integrate this twice to solve for ~r results in an elliptical integral.
Thus, we must instead solve for the position using the true anomaly:

r(θ) =
a(1 − e2

1 + e cos θ
(2)

Where θ is the angle swept out by the body in orbit, a is the semi-major axis and
e is the eccentricity of the orbit. θ is not implicitly a function of time. However,
it is related to time through the mean anomaly and eccentric anomaly. The
mean anomaly is given by:

M = 2π
(t− tp)%T

T
(3)

Where tp is the initial time, in our case 0, and T is the period. The eccentric
anomaly is given by:

E = M + e sinE (4)

Clearly, it is impossible to explicitly solve for E. To reconcile this we’ll solve
for it iterative using the Newton-Raphson method. Let f be defined as:

f(E) = E − e sinE −M (5)

So that
f ′(E) = 1 − e cosE (6)

Which gives us the iterative function:

En+1 = En − En − e sinEn −M

1 − e cosE
(7)
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Figure 1: A plot of the orbit of Halley’s Comet in polar coordinates, where r is
in AU and theta is in degrees.

Thus, using the Newton-Raphson and 7 we are able to calculate E for a
given t. Finally, we can solve for θ using:

tan
θ

2
= (

1 + e

1 − e
)

1
2 tan

E

2
(8)

Applying this method to solve for the orbit of Halley’s Comet yields the orbit
radius ~r as a function of θ.

2 Runge-Kutta Approximation

The Runge-Kutta methods are an expansion which mirrors the expansion of
the Taylor Series, with the main difference being that the Runge-Kutta methods
require one less order than the Taylor Series. They are used to to iteratively solve
differential equations. The derivation of the third-order Runge-Kutta methods
is:

y(x+ h) = y(x) +

n∑
i=1

γiki (9)

ki = hf(x+ αih, y +

i−1∑
j=1

βijkj (10)

Expanding k1 and k2 as we did in class, we obtain:
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y(x+ h) = y(x) + γ1hf + γ2(hf + αh2fx + βh2fyf) (11)

Now, we need to expand k3:

k3 = hf(x+ α2h, y + β1hf + β2k2) (12)

γ3k3 = γ3hf(x+ α2h, y + β1hf + β2hf + β2α1h
2fx + β2β1h

2fyf) (13)

γ3k3 = γ3hf(x+ α2h, y + h(β1 + β2) + β2α1h
2fx + β2β1h

2fyf) (14)

γ3k3 = γ3h[f + α2hfx + h(β1 + β2)fx + h(β1 + β2)fyf + β2 + α1h
2fxx+

+ β2β1h
2fyxf + β2β1h

2fyfx + β2α1h
2fxyf + β2β1fyyf

2 + β2β1fyfyf ] (15)

We then compare the coefficients in γ1k1, γ2k2, γ2k2 to the coefficients in the
third order Taylor Series:

y(x+ h) = y(x) + hf(x, y) +
1

2
h2f ′ +

1

6
h3f ′′ (16)

y(x)+hf+
1

2
h2(fx+fyf)+

1

6
h3(fxx+fxyf+2(fyfx)+fy2f+ffxf+fyyf

2) (17)

This yields the following system of equations for the coefficients of the Runge-
Kutta method:

γ1 + γ2 + γ3 = 1

γ2 + α1 + γ3α2 + γ3(β1 + β2) =
1

2

γ2β1 + γ3(β1 + β2) =
1

2

γ3β2α1 =
1

6

γ3β2β1 =
1

6

This system cannot be solved explicitly because there are 7 variables and
only 5 equations; thus, 2 must be chosen. In this case, I chose:

γ3 =
1

3
, β2 =

1

2

And the other coefficients are solved, yielding:

α1 = 1, β1 = 1, γ2 = 0, γ1 =
2

3
, α2 = 0
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3 Differential Solution

A 4th order Runge-Kutta method was used to compute the orbit of Halley’s
Comet. Because the Newton-Raphson method can be computed to an arbitrarily
small tolerance, it was taken to be the ”true” orbit of the comet. Interestingly,
the orbit calculated by the Runge-Kutta method lagged behind that calculated
by the Newton-Raphson method.

Figure 2: The motion calculated by the Runge-Kutta method lags behind the
one calculated by Newton-Raphson

Due to this lag, the error between the RK4 and Newton-Raphson radii is
periodic in two ways: during one period of rotation, there is one radius where
they are equal, and one where there is a maximum error. Thus, there the
time between two zeros and the time between two local maximum values is one
orbital period. Second, the error between the two orbits starts at 0 and reaches
an absolute maximum of 35.587, the distance between perihelion and aphelion
(when the Runge-Kutta method is off by half an orbital period) before returning
back to 0.
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Figure 3: Periodic error created by lag in the RK4 method

The periodicity of the error is also clear in the cumulative sum of the error;
on a smaller scale, the error increases more rapidly when the orbits are offset by
the largest value in a single orbit, but on a larger scale it increases fastest when
the Runge-Kutta Method is around a half-orbit off from the Newton-Raphson
method.
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Figure 4: Smaller scale cumulative sum.

Figure 5: Larger scale cumulative sum.
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4 Orbit Stability

The orbit of Halley’s Comet was then calculated using the RK4, RK2, and
LSODA methods of scipy.integrate. On the timescale used, the RK4, RK2,
and LSODA orbits of Halley’s Comet appear to be stable, outside of the lag
they experience relative to the Newton-Raphson solution. They also trace out
the same orbit. Due to the absence of complicating factors such as mass loss,
rotating coordinate systems, and additional bodies, a stable orbit is not unex-
pected.

Figure 6: Orbits traced by RK4, RK2 and LSODA methods.
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