Modeling 10

Ryan Swope
April 21, 2021

1 Artificial Neural Networks

1.1 Introduction to ANNs

Artificial Neural Networks, or ANNSs, are fairly rudimentary but powerful and
diverse examples of artificial intelligence. Their primary strengths lay in pattern
recognition, although their applications extend far beyond this. The appeal of
ANNSs for our purposes are their aforementioned robustness, simple to imple-
ment topology, and straightforward training mechanism. ANNs are comprised
of layers of nodes. A node contains a single numerical value, and cannot influ-
ence nodes in it’s home layer. There are three types of layer: input, hidden,
and output. The input layer has the same number of nodes at there are input
values, and the output layer has the same number of nodes as output values;
however, the hidden layers can have any number of nodes. The function of the
input and output layers is clear, and the function of the hidden layer(s) is to
connect the input layer to the output. When data is passed from an input node,
it contributes a certain value to each of the nodes in the following layer. This
contribution is determined by the weights and biases. These are matrices that
describe the transition between the N dimensional input layer vector and the
M dimensional following layer vector. Weights multiply the value of a node
and biases are added to it. The value going into a node, which is determined
by the sum of the contribution from the previous layer, is then passed through
an activation function such as the sigmoid function which normalizes the value,
and this is the value stored in the node. This process is repeated, or propagated,
through the network until the output layer is reached. At the output layer, each
node corresponds to a “choice” by the network. The node with the highest value
is the choice the network is guessing the input to be. For example, the network
we wrote for the first part of this project learned to recognized the digits 0-9.
If the network thought the digit it was seeing was an eight, the eighth node
would have a large value (Usually >.95, although the only requirement is it is
the largest value).

Upon initializing the network, random values for the weights and biases are
chosen, so the value predicted by the network is random. To train it to cor-
rectly recognize data, a process called back-propagation is used. In essence,

Thttps://pathmind.com/wiki/neural-network

https://pathmind.com/wiki/neural-network

Inputs Weights Net input Activation
function function

output

&

Figure 1: Example neural network topology E|

back-propagation works as follows: An input with a known value is passed
through the network and the output is “rated” by a cost function. The better
the guess is, the lower the cost. Based on the cost value and a parameter called
the learning rate (typically 7)), the network is nudged in such a way that it
would produce a “more correct” output. This is done by changing the weights
and biases of activated nodes by small values. The larger the learning rate, the
larger these vhanges will be. Because these values are wrapped by the acti-
vation function, they will never exceed 1 or fall below 0. This is done many,
many times until the network is sufficiently trained. Then, an input can be sent
through the network to retrieve its output.

1.2 MNIST

As stated earlier, the goal of this network was to recognize the digits 0-9.
Our training data was obtained from the MNIST, an extremely common ANN
dataset. It contains 60,000 labeled digits that were hand written by school chil-
dren and then digitized into 28x28 images. These images can then be unraveled
into vectors of dimension 784, with each value corresponding to the gray-scale
value of that pixel, between 0 and 255. This value could then be fed through the
network, with an output layer of 10 nodes corresponding to each digit. MNIST
was further split into three categories: training data, test data, and validation
data. Training data is used to train the network through the process of back
propagation, and the test data acts as “new” data the network can then test
itself on. The validation data is similar, as after each training session, or epoch,
the network runs through the validation data and returns this as an empirical
rating of how well the network is doing. The improvement in recognition of the
validation data over time is called the recognition rate.

My best performing network had 50 hidden layers, trained for 30 epochs and
had n = 3.0. This seemed to be the Goldilocks zone for all three parameters.

—— Accuracy

Learning Rate, H.L. Size: 50 Epochs: 30 eta: 3.0

0.96

0.95 A

0.94 4

0.93 4

Percent Correctly Identified

0.92 4

0.91 4

T
0 5 10 15 20 25 30
Epoch

Figure 2: Best network topology learning curve.

More hidden layers caused the network to take longer to run with no improve-
ment or even worse performance, 30 epochs was sufficient to train the network,
and a learning rate of 3 was large enough to quickly converge to the local mini-
mum of the cost function, but was not so large that the network jumped around
too much to ever converge. This network maxed out at a recognition rate of
about .96, which is fairly good.

Unfortunately, the network did not perform this well on the handwritten
images I fed through it. They were made in a simple program called Paintbrush
in 28x28 PNGs. I tested it on three sets of the digits and the network was
only able to recognize 16/30 - barely better than a coin flip. This baffled me
considering how well it had done on the MNIST data, although apparently this
is not uncommon. Several of my peers had the same issue. I suspect there
are a few factors at play. Creating the digits with a black brush meant the
7activated” pixels all had values of 255, whereas the handwritten ones were
likely not near that value, so the network was not used to handling these large
values. The converse could be said about the white space; paper, especially after
being written on by a child, will not be perfectly white. Other, more unlikely
factors include my handwriting and brush thickness. However, I find both of
these unlikely as I tested the network on other digits written by Rachel Price,
and the results were similar. In particular the network struggled with the digits
4,6, 7 and 9. Certain features of these digits, especially when handwritten, are
present in other digits, thus offering a possible explanation for the difficulty the
network had with them. The results of all thirty digits are in Table

Digit | Correct (Out of 3) | Confused Digits

0 3 -

1 3 -

2 2 3

3 2 0

4 1 6, 7
) 2 3

6 0 59,2
7 0 3,8,3
8 2 9

9 1 4,8

Table 1: Outcomes of handwritten values.

0123Y4
56781

Figure 3: One set of my handwritten digits.

1.3 Network Topology

As I mentioned before, this was my nest performing network, although it was
not the only one I tested. I tested several others with various hidden layer sizes,
epochs of training, and learning rates. For epochs and hidden layers it was
mostly a question of diminished return. Although in theory training the net-
work for longer will results in better recognition rate, in practice the maximum
possible value is asymptotically approached, and beyond 30 epochs there was
no perceivable improvement. Similarly, adding hidden layer nodes increased the
length of time it took the network to train, but no tangible improvements could
be seen. In fact, more hidden layer nodes often made the network worse. In
contrast, the learning rate did have a more or less optimal value, that could
approach the local minimum of the cost function quickly (less epochs needed)
without being too large that the network could never settle into this mini-
mum. My optimal value of 3.0 was mostly a guess and check value, but a more
analytical solution could certainly be found, although this difference is easily
compensated by simply letting the network run for sufficiently many epochs.

As you can see, the network struggles to achieve recognition rates above .95.
There are a number of factors at play, including bad images that even a human
couldn’t recognize, but considering the rudimentary construction of our network
I’d consider a .95 recognition rate a success.

Percent Correctly Identified

Percent Correctly Identified

Percent Correctly Identified

— Accuracy

Learning Rate, H.L. Size: 30 Epochs: 30 eta: 3.0

0.950 4

0.945 4

0.940

0.935 4

0.930 4

0.925 4

0.9201

0.915

0.910

o4

—— Accuracy
Learning Rate, H.L. Size: 30 Epochs: 30 eta: 1.0

0.94 4

0.92 4

0.90 1

0.88 1

0.86 1

0.84 4

0.82 4

o

—— Accuracy
Learning Rate, H.L. Size: 100 Epochs: 30 eta: 3.0

0.95 4

0.90 4

0.85 4

0.80 4

075

0.70 4

0.65 1

0.60 4

Epoch

Percent Correctly Identified

—— Accuracy
Learning Rate, H.L. Size: 30 Epochs: 30 eta: 10.0

0.95

0.94 4

0.93 4

0.92 4

Percent Correctly Identified

0.91

o

—— Accuracy
Learning Rate, H.L. Size: 30 Epochs: 60 eta: 2.0

0.95 4

0.94 4

0.93 4

0.92 4

Percent Correctly Identified

0.91

0.90 4

o

Epoch

—— Accuracy
Learning Rate, H.L. Size: 500 Epochs: 30 eta: 3.0

0.425 4

0.400 4

0375

0.350

03254

0.300 4

0.275 4

o

1.4 Comments on Optimization

When considering optimization with ANNs, or any artificial intelligence, there
is a clear trade off: optimized recognition or optimized training. In theory, with
a much larger training dataset, multiple networks or a more robust detection
algorithm (incorporation of structures larger than 1 pixel), our network could
be drastically improved, but this is much more difficult to implement. For our
purposes our network was, in my opinion, the right one to use. However, for
large-scale implementations in, say, mobile check deposits where it is imperative
the recognition rate is far greater than .95, the more complex network would be
necessary.

2 Tensorflow Object Recognition

2.1 Introduction

Without getting into too many gritty details, Tensorflow is an open-source ma-
chine learning platform maintained by Google. It has a very high learning curve
which I experienced firsthand, but with that comes a huge amount of power,
both literally in the form of GPU acceleration and figuratively in its applica-
tions within deep learning and and other advanced machine learning techniques.
One of its best features for entry level users such as myself are their pretrained
neural networks. These networks are specific to a certain application and can
be used as-is if they are already capable of performing the desired task, or they
can be retrained on a new set of training data without much of the heavy lifting
involved in trained a complex neural network.

2.2 Object Detection Training

I used two pretrained models, the fast_rcnn_inception v2 model and the
ssd_mobilenet_v2_coco in an attempt to train a network to recognize a knife
in either an image or a video. After the incredibly arduous task of setting up
Tensorflow, I experience significant difficulty with fast_rcnn_inception v2. It
would evolve as expected until about step 500, at which point the loss would
explode to a value on the order of 1lel3, from somewhere around. Loss is a
measure of how well a network is doing and less is better, so this presented
a serious problem. I was unable to find others with the same issue (that it
would explode after several hundred steps), so I tried capping the training at
500 steps. Unfortunately, the network was simply no well trained enough and
was not able to recognize knives in images. The results of the training could be
seen in Tensorboard, which provides learning curve rates for your models.

The ssd_mobilenet_v2_coco model trained successfully overnight, and the
losses seemed to be approaching an asymptotic value. Ideally, I would’ve been
able to train it for longer, as the Regulation Losses were still increasing, meaning
my model was still improving, but that was not a possibility. Overall, however,
the model was able to train for over 3,000 steps, which was about as good as I

))
) L1
0

0 5 0 0 10 5 2 02 5 0

Figure 4: Total Losses during training. fast_rcnn_inception_v2 The axes
turned out odd.

3 4
3 3
3 2
3 1
2 3
29

05 0 0 1k .5 22 .5 3k k

Figure 5: Regulation Losses during ssd_mobilenet_v2_coco training. The axes
turned out odd.

05 0 @ k .5 %X X%k .5 Xk k

Figure 6: Total Losses during ssd_mobilenet_v2_coco training. The axes
turned out odd.

could’ve hoped for without GPU acceleration. But, there were more problems
with Tensorflow. While the ssd_mobilenet_v2_coco model successfully trained,
I then had trouble saving this model and then applying it to images. It was
unable to recognize the knife in most of the images, and for some reason they’re
not labeled, but eventually I was able to get the network to work on a few
images, and considering all the headache this has cause up to this point, that is
a success.

Figure 7: Recognized Image

Figure 8: Recognized Image

Figure 9: Recognized Image

2.3 Closing Remarks on Tensorflow

Tensorflow assumes a certain knowledge from its users, and I am not proficient
enough to fully understand Tensorflow. As a result, my experience was very
much a trial by fire. That being said, I'm glad I went through it, and I would
hope that were I to attempt this again, I would have learned many valuable
lessons this time around that would save me time in the future. Tensorflow 2.0
is also relatively new, and unfortunately most tutorials are for Tensorflow 1.1x,

so as time goes on I'm hopeful tutorials are updated to reflect the significant
changes that were made between the two versions. Despite what was essentially
a surface level expedition into Tensorflow, its power and versatility were more
than apparent, and with more time to learn I think it would be an incredibly
powerful tool. There may be a bit more to say, but I'm exhausted from the last
several days I spent wrestling with Tensorflow, and despite my marginal success
I am a bit disappointed with what little I have to show for it, so I'll leave it at
that.

3 References
I would like to thank EdjeElectronics for his tutorial on using Tensorflow in

Github, and Rachel Price for providing her handwritten numbers and help de-
bugging code.

10

	Artificial Neural Networks
	Introduction to ANNs
	MNIST
	Network Topology
	Comments on Optimization

	Tensorflow Object Recognition
	Introduction
	Object Detection Training
	Closing Remarks on Tensorflow

	References

