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1 Non-inertial Forces and Potentials

Solving for the equations of motion for two bodies in orbit around each other
is a relatively straight-forward process. However, when a third mass is added,
even if its mass is small, the equations of motion become impossible to solve
symbolically. Among the complicating factors are the additional differential
equations associated with the third body, as well as the fact that the system can
no longer be defined in co-planar frame of reference. One strategy to approach
the problem is to instead consider the restricted three body problem. In the
restricted three body problem, the third object is considered to have no mass,
and thus exerts no force on the other two bodies. As such, they will orbit as
they would in the two body problem. Then, we can rotate our reference frame
with the two larger bodies. While this simplifies the problem, it also introduces
new parameters to consider, as this new reference frame is non-inertial. These
are the centrifugal force and Coriolis Force. Taking these into account, we find
the equation for the third body in the non-inertial reference frame to be:
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The component of this equation that is operated on by the del operator is
called the effective potential. We can plot one dimension of the potential and
force in a two dimensional cross section, two dimensions on a three dimensional
surface, or we can show them in three dimensional space by showing how the
two dimensional surface change as we iterate through z-space.

2 Lagrange Points

Due to the effective potential and forces manifested in the rotating reference
frame, there are five points in the system where there is no net fore acting on
an object, called the Lagrange points. Recall that the forces are related to the
gradient of the effective potential; thus the Lagrange points can also be described
as the points of local minima or maxima in the effective potential. There are
approximations that exist when the mass ratio M2

M1
= q is so small that the

center of mass can be approximated to be at the center of M1. However, when
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Figure 1: Plot of the force as a function of x.

Figure 2: Plot of the effective potential as a function of x.

this is not the case, such as in a system a q = 1, The first three Lagrange points
can be solved for by numerically determining the roots of a quintic polynomial.
The fourth and fifth points can be more easily solved for using the geometry of
the system. These points are easy to pick out on a contour map of the effective
potential.
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Figure 3: Plot of the force over the xy plane.

Figure 4: Plot of the potential over the xy plane.

Mathematically, the L4 and L5 points should be stable if M2

M1
is less than 1

25 .

I was unable to get stable L4 and L5 points with mass ratios more than 1
60 .
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Figure 5: Plot of the Lagrange Points. L1 lies at the center, L2 lies on the
positive x axis, L3 on the negative x axis, L4 in the positive y region and L5 in
the negative y region.

Figure 6: Stability of L4 when q= 1
60
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Figure 7: Stability of L4 when q = 1
75

Figure 8: Stability of L4 when q= 1
100

3 Trojan Asteroids

The Trojan asteroids exist at the L4 and L5 Lagrange points of the Sun-Jupiter
system. They are called Trojans because they were first observed migrating
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between L4 and L5. In the rotating reference frame, these asteroid trace out a
horsehoe pattern as they move from L4 to L5 and back. L4 and L5 are stable
Lagrange points; we would not expect the asteroids to be sensitive to initial
conditions, as the mass ratio of the Sun-Jupiter system exceeds that necessary
to maintain stable L4 and L5 points. In fact, asteroid were created with a range
of initial conditions that created these horseshoe shaped orbits.

Figure 9: Horseshoe Orbits traced out by Trojan Asteroids.

I also attempted to plot the stable orbit of the JWST in the L2 point. L2 is
an unstable point, and the JWST will have to correct its orbit over the course
of its lifetime to remain there. My plot reflects this instability.

4 Roche Lobes

Binary star systems with mass ratios close to 1 and a small distance separating
the bodies will deform each other, resulting in a bulging star. These bulges
trace out equipotential surfaces. We can visualize the stars’ shapes in three
dimensions by iterating through z space and tracing a single equipotential line.
In the one I created, there is a second outer equipotential ring that is unrelated
to Roche Lobes. The stars’ shapes can clearly be seen emerging from a single
point below the xy plane, growing to a full cross section at the xy plane, and
then shrinking back down.

6



Figure 10: Attempted Plot of JWST

5 Non-Restricted 3 Body

The crux of this project thus far has been the assumption that the third mass
in the three body system is negligible, and thus exerts no force on the two large
masses. However, if the third mass approaches the magnitude of the two larger
masses, this is no longer valid. To include the first body we can ”simply” add to
the differential equations required to solve the two body problem. We will need
to ass z positions to all three masses, and the force equations due to and acting
on the third mass. However, this system is in no way stable, and in actually
exhibits chaotic behavior. This is clear in the plots of the orbits. Interestingly,
in one instance, two of the bodies orbited and the third body went on its on
trajectory, only for them to re-collide and have the third body switch with one
of the first.
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Figure 11: Chaotic orbits with a recapture event.

Figure 12: Chaotic orbits.
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