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1 Logistic Population Model

A natural way to express population growth, especially for populations that
have a negligibly small impact on their environment, is to say that the rate of
increase is related to the number of individuals, namely:

Ṗ ∝ P =⇒ Ṗ = kP (1)

This can be easily integrated to give an exponential growth model:

P = P0e
kt (2)

Where P0 is the initial population and t is time. However, no environment
could support such a population indefinitely. Thus, it is necessary to introduce a
growth-limiting factor which describes the carrying capacity of the environment.
In this case, population growth is proportional to both the population and the
square of the population.

Ṗ ∝ P, P 2 =⇒ Ṗ = kP − P 2

N
(3)

Here, k is the population’s growth factor, and N is the population’s growth-
limiting factor. Clearly, at larger populations the limiting term will approach
the growth term, and the population change will approach 0, indicating the
equilibrium population for the environment. This equation can be separated and
integrated with the help of a variable substitution, yielding the final equation
for the population as a function of time:

P =
1

1

1−P0
N

e−kt − 1
N

(4)

This logistic growth equation is known as the Verhulst Model, after Belgian
mathematician Pierre Verhulst. We’ll use these models to investigate the popu-
lation growth and carrying capacity of the United States, thanks to U.S. census
data. Using the scipy.optimize package, the values for k and N of the Verhulst
model were found to be:
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k 0.020774672563165758
N -494589190.54299223

This indicates that the U.S. has a carrying capacity of just under 5 billion.
Plotting the Verhulst model also clearly indicates that the U.S. has not yet
reached its carrying capacity. However, the effect of the limiting factor is clear
when the Verhulst model is compared to the exponential model.

Figure 1: Population models for the U.S. Although the population is still in
the growth phase, the limiting factor has caused significant deviation from the
purely exponential model.

2 Predator-Prey Model

Another factor that can be incorporated into the population model of a certain
species is the presence of a second, predatory species. We can create a highly
simplified model using birth, death, and interaction rates. For this model, we’ll
consider a population of foxes and rabbits.

Ṙ = αR− βRF = αR(1− β
αF )

Ḟ = γRF − δF = δF (γδR− 1)

This model, known as the Lotka-Volterra model, makes some major assump-
tions namely that rabbits are only killed when they are eaten, every time a fox
encounters a rabbit it eats it, and a population can recover from less than 1
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individual. The coefficients in these can be reduced by reparameterizing R and
F such that:

R′ =
γ

δ
R

F ′ =
β

α
F

The differential equations reparameterized are then

1

α
Ṙ′ = R′(1− F ′

1

δ
Ḟ ′ = F ′(R′ − 1)

Next, we can parameterize the time in our model

dt′ = αdt

which gives the equations
dR′

dt′
= R′(1− F ′)

1

δα

dF ′

dt′
= F ′(R′ − 1)

Finally, letting η = 1
δα we get our final equations characterized by a single

parameter.

dR′

dt′
= R′(1− F ′) (5)

dF ′

dt′
= ηF ′(R′ − 1) (6)

Letting η arbitrarily be 3
4 and the initial, reparameterized population be 10

rabbits and 1 fox, we can numerically solve for the rabbit and fox populations
over time using the LSODA integrator.

Alternatively, the population dynamics can be presented in the phase space
of rabbit and fox populations. Emergent of iteration through intial population
sizes and the intial ratio of rabbits to foxes is the existence of two fixed points
and a set of stable points. The fixed point, in this parameterization, is occurs
when the rabbit and fox populations are both 1. This point is a stable fixed
point, a fact which becomes clear when consider small changes to the populations
around (1,1). Equations 5 and 6 are 0 at this point due to their subtraction
terms. If R′ or F ′ is offset from 1 slightly, these terms will still be very close
to 0, and thus the population will be attracted back toward that point. This
attraction can be seen in the lack of other steady population states near (1,1) in
phase space. Conversely, there is an unstable fixed point at (0,0). Perturbations
at this point will result in rapid population growth. This too can be seen by
the movement of population curve near (0,0) in phase space. Finally, there are
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Figure 2: Rabbit and Fox population evolution as a function of time.

regions of stability along the curves seen in phase space. Each one represent the
cyclic behavior of a given population based on its initial conditions, and in the
absence of outside influences (which is the case by nature of the Lotka-Volterra
model), the populations will not deviate from these curves.

It is possible to add a third population to the Lotka-Volterra model. In
this example, we’ll add dinosaurs. Dinosaurs eat both rabbits and foxes. The
differential equations for this system are:

Ṙ = aR− bRF − cRD
Ḟ = dRF − eF − fFD
Ḋ = gDR+ hDF − iD

For the sake of my sanity and time, I did not attempt a reparameterization of
these equations. Integrating these and plotting them yeild highly chaotic results.
Small changes in the initial populations and coefficients can cause one predator
to be completely out competed by other, the rabbits to grow uncontrollably
because the dinosaurs eat too many foxes, etc. Plotting these in phase space
would look akin to spaghetti. Instead, one of the best ways to represent three
species (and in fact n species) is with the community matrix, J. Consider the
populations of rabbits, foxes, and dinosaurs to be a three vector in ”animal
space”: RF

D
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Figure 3: Rabbit and Fox population dynamics in phase space.

Then, we can write our differential equations in matrix form:ṘḞ
Ḋ

 =

aR− bRF − cRDdRF − eF − fFD
gDR+ hDF − iD

 (7)

This can be written as a vector transformation utilizing the community
matrix J, the Jacobian of the differential equation matrix evaluated at the
equilibrium population. This yields the final result:ṘḞ

Ḋ

 =

 a −bRe −cRe
dFe −e −fFe
gDe hDe −i

RF
D

 (8)

An interesting property that is immediately clear is that the trace of J is the
total natural birth and death rate of all animals in the system. Additionally, by
the stable manifold theorem, if one or more of the eigenvalues of J have positive
real components the equilibrium is unstable, but if both have negative real
parts it is stable. 1 Evaluating the community matrix of the reparameterized
two species model at its two equilibrium points, we find it to be:[

1− F ′e −R′e
ηF ′e ηR′e − 1

]
1Community matrix and stable manifold theorem from: https://en.wikipedia.org/wiki/

Community_matrix
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Figure 4: Chaotic and runaway population dynamics with the introduction of
the third species, dinosaurs.

At (0,0) and η = 3
4 it evaluates to: [

1 0
0 −1

]
And at (1,1) this evaluates to: [

0 −1
3
4 − 1

4

]
Indeed, the eigenvalues for the (0,0) matrix are 1 and -1, indicating an

unstable equilibrium, while the eigenvalues for the the (1,1) equilibrium point

are (− 1
8 + i

√
47
8 , − 1

8 − i
√
47
8 ), indicating a stable equilibrium point!

3 Epidemic Model

A population of N individuals (people) in the midst of an epidemic can be
partitioned into three groups: Healthy, Sick, and Immune (it should be noted
that dead people are immune to all diseases). Thus,

N = H + S + I

We can describe the spread of the disease in a closed population with the
following equations:
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Figure 5: Disease spread through a population with no immunization or treat-
ment.

Ḣ = −αHS

Ṡ = αHS − βS

İ = βS

Where α describes the transmission between sick and healthy individuals
and β describes the recover (death) rate of sick individuals. The coefficients
were chosen as such to maintain a steady population, satisfying:

Ḣ + Ṡ + İ = 0

Letting α = .000004 and β = .0036 we find the relatively realistic scenario in
which a serious epidemic infects a population of 10,000 people over the course
of about 2.5 years with no effort to control or prevent the disease.

We can model the epidemic again, but this time include efforts to decrease
the transmission rate by reducing α by a factor of 4. The disease take much
longer to take hold of the population and infects about one third less people.

Similarly, we can immunize a share of the population. Using the original
value of α, we see that the population infects less people and takes longer to
spread.

Unsurprisingly, immunization can be increase or transmission rate decreased
to the point where the sick population is reduced to patient zero, or a minute
number of individuals, while the rest of the population remains unaffected.
However, this simple model does not account for numerous factors, including
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Figure 6: Disease spread through a population with efforts to reduce transmis-
sion.

Figure 7: Disease spread through a population with an immunized subset.
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Parameter Description Value
ΨH Infection rate of high-risk susceptible individuals 1.2
δI Disease-induced death rate of infected individuals 0.10
δH Disease-induced death rate of hospitalized individuals 0.5
θI Recovery rate of infected individuals 0.1
θH Recovery rate of hospitalized individuals 0.2
α Rate at which latent individuals become infectious 0.1
τ Hospitalization rate for infected individuals 0.16
Π Recruitment rate 1.7
p Fraction of the individuals at high-risk 0.2
β Transmission rate of disease Estimated
1
µ Average life of human 63

Table 1: Parameters for Ebola outbreak model.

hospitalization, the abundance of high risk individuals etc. It would be nearly
impossible to model such a scenario without measured parameters, so to do
so we will use equations and parameters used to model the 2014 ebola virus
outbreak in Sierra Leone and Liberia (Khan, et al. 2015) 2.

ṠL = Π(1− p)− λSL − µSL
˙SH = Πp−ΨHSH − µSH

Ė = λ(SL + ΨHSH)− (α+ µ)E

İ = αE − (τ + θI + δI + µ)I

Ḣ = τI − (θH + δH + µ)H

Ṙ = θII + θHH − µR

In these equations, SL are the number of low-risk individuals, SH are the
number of high-risk individuals, E are the number of exposed individuals, I are
infected individuals, H are hospitalized and R are recovered. λ is known as the
force of the disease and is given by

λ = β
(I + ηH

N

The coefficients are described in Table 1.
β is the contact rate, and is estimated case-by-case. For the 2014 Sierra

Leone Ebola outbreak, it was measured to be .344 (Khan et al. 2015). Integrat-
ing the equations with the given constants yields the results shown in Figure
8. Perhaps most interesting is the rapid increase in exposed individuals. This
emphasizes how a disease can run out of control, especially in underdeveloped

2Khan A, Naveed M, Dur-E-Ahmad M, Imran M. Estimating the basic reproductive ratio
for the Ebola outbreak in Liberia and Sierra Leone. Infect Dis Poverty. 2015;4:13. Published
2015 Feb 24. doi:10.1186/s40249-015-0043-3
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Figure 8: Model of the 2014 Sierra Leone Ebola outbreak.

countries that lack the infrastructure and education to prevent the rapid spread
of the disease. Appropriately, hospital admittance lags behind both exposed
and sick individuals. Although this model certainly still has flaws, it is much
better at modeling an actual epidemic.
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